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Abstract

We introduce a spatial graph and hypergraph model that smoothly interpolates between
a graph with purely pairwise edges and a graph where all connections are in large
hyperedges. The key component is a spatial clustering resolution parameter that varies
between assigning all the vertices in a spatial region to individual clusters, resulting in the
pairwise case, to assigning all the vertices in a spatial region to a single cluster, which
results in the large hyperedge case. A key component of this model is that the spatial
structure is invariant to the choice of hyperedges. Consequently, this model enables us to
study clustering coefficients, graph diffusion, and epidemic spread and how their behav-
ior changes as a function of the higher-order structure in the network with a fixed spatial
substrate. We hope that our model will find future uses to distill or explain other behaviors
in higher-order networks.

Author summary

Higher-order structure in networks encompasses group-level interactions beyond simple
pairwise links. These group structures can profoundly shape dynamics like epidemics
and synchronization, often in counterintuitive ways. Studying these effects is challenging
because even basic measures like the clustering coefficient have multiple, non-equivalent
higher-order generalizations. We introduce a flexible hypergraph model that smoothly
interpolates between purely pairwise and higher-order interactions while preserving
network connectivity. The model incorporates geometric or feature-based node infor-
mation from sources such as spatial data or embeddings, enabling realistic network
constructions. We demonstrate its utility through case studies on clustering, higher-
order PageRank diffusions, and epidemic spreading. Our model provides a simple
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and flexible method to better delineate the distinct roles of pairwise and higher-order
structures in complex networks.

Introduction

Parametric graph and hypergraph models have played an important role in network science
and complex systems research—from the Watts and Strogatz model of local clustering and
graph diameter [1], to Kleinberg’s study of small world routing [2], to the famous mixing
parameter in the Lancichinetti, Fortunato, and Radicchi (LFR) stochastic block model [3].
More generally, parametric variation in complex systems helps to identify different regimes
of behavior and often phase transitions among them. Two examples of this include connectiv-
ity in a simple uniform random graph (Erdés-Rényi-Gilbert model) [4-7] and synchroniza-
tion in the Kuramoto oscillation [8,9]. The key feature of these models is that they allow us to
study a system as only one aspect varies.

While these parametric models have yielded foundational insights on pairwise data, many
complex systems exhibit interactions beyond simple pairwise relationships. When these
are present, they are often critical for identifying important structure in the networks [10].
Beyond simple structure, higher-order dynamics can introduce complex effects such as bista-
bility or hysteresis in epidemic spreading [11,12]. In addition, dynamics such as synchro-
nization can be sensitive to the choice of data representation in the higher-order setting [13].
Even classical pairwise notions such as homophily can break down in the higher-order set-
ting [14]. For more about the state of higher-order studies, see the surveys [15] and [12]. An
important aspect of higher-order networks is that ideas and concepts that are well-defined
and unique in the pairwise setting often admit multiple, distinct, and different generalizations
when extended to higher-order frameworks. This complexity motivates the development of
parametric models that interpolate between pairwise and higher-order interactions, enabling
controlled exploration of these richer dynamics and settings.

In this paper, we introduce a spatial model of graphs and hypergraphs that enables para-
metric variation from a purely pairwise edge behavior to the case where all nodes are involved
in only hyperedges. Crucially, this can be done while retaining the same spatial graph sub-
strate. This enables us to study changes due to the hyperedge structure alone, which represents
a unique capability among hypergraph models.

The proposed model is simple and scalable. We randomly assign points to each vertex and
also assign a number of neighbors, which is usually sampled from a random distribution.

In the pairwise case, they directly connect to this number of nearest neighbors. However, in
the general case, we run a clustering algorithm on the spatial connections among the points
within this spatial region. The idea is that if points represent some latent similarity space, then
nearby points will reflect similar features. Consequently, we use the spatial clusters in these
regions to induce hyperedges. By varying the spatial cohesion, we can adjust the presence of
pairwise edges compared with hyperedges. We discuss the model formally in Sect 1. One chal-
lenge was defining the spatial cohesion parameter to preserve scaling as we vary the dimen-
sion of the space from which points are drawn. This resulted in developing a key parameter
that smoothly interpolates from the pairwise to hypergraph case for multiple dimensions and
number of neighbors assigned. A different feature of this model is that much of the connectiv-
ity among nodes is invariant to the choice of edges versus hyperedges, a result we formalize in
Theorem 1.
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We then explore how this model enables us to study the impact of higher-order structures
in hypergraphs. Our first study is on clustering coefficients (Sect 3). There are many differ-
ent types of clustering coefficients in hypergraphs. We study a few of the simplest and most
common including both unweighted and weighted clustering coefficients of the clique expan-
sion as well as bipartite clustering coefficients of the node-hyperedge incidence matrix. In
what is a small surprise, scaling from medium-sized to large-sized hyperedges reduces the
global clustering coefficient of the projected graph. This occurs because adding new projected
hyperedges can cause the number of length-2 paths, or wedges, to grow much faster than one
might expect. This study also shows how the behavior of different clustering coefficients varies
quite substantially as we interpolate from pairwise graphs to hypergraphs, which suggests that
results about clustering coefficients in hypergraphs may not be robust to changing the type of
clustering coeflicient used.

The next study is in terms of diffusion (Sect 4). We use a seeded or personalized PageRank
diffusion in hypergraphs [17]. In this case, the behavior of the diffusion is governed by the
spatial substrate underlying the network. Consequently, we see little difference in the behav-
ior of the diffusion as we move from the pairwise case to the hypergraph case. The choice to
include this study is meant to show that the model behaves as expected when higher-order
structure may not impact the underlying physics.

The final study is on epidemic spread (Sect 5). In this case, there is tremendous uncer-
tainty about the impact of higher-order structure and, indeed, a variety of mixed results in
the literature. For example, the addition of higher-order structures and group-level spread-
ing can greatly alter the stability of epidemic thresholds by inducing a region of bistability [11]
not seen in traditional pairwise models. Moreover, heterogeneity can also play competing
roles in pairwise and higher-order structures [18] to accelerate or inhibit spreading. In this
case, we wish to study epidemic spread in a model that attempts to mimic an airborne virus
in the presence of ventilation. In this scenario, large hyperedge interactions require spaces
with additional ventilation, which corresponds to a dilution effect of infectious aerosols. Of
note, we find that the impact of higher-order structure varies with the epidemic parameters in
non-intuitive ways in this scenario (Sect 5.5).

This paper extends a previous introduction of these ideas from the same authors [16]. Key
differences in this greatly expanded version include (i) a discussion of the model beyond two-
dimensional spatial graphs, (ii) a theoretical characterization of the connectivity of the model,
and (iii) studies of the hypergraph model in terms of clustering coefficients as well as (iv)
graph diffusion. Finally, the epidemic study includes a more detailed analysis of the specific
hypergraph mechanisms underlying the differences observed in [16]. We discuss additional
related work in the space of random geometric graphs, random geometric hypergraphs, and
random geometric simplicial complexes in Sect 2. The ability to easily interpolate between a
pairwise graph and a hypergraph appears to be a unique feature of this model.

1. Model description

The model we propose is simple, fast, and flexible. It begins with a set of points in a space

X along with a distance metric D. In all of our studies, these points are sampled from the d-
dimensional unit-cube [0,1]¢ uniformly at random, although in principle a different space
or distribution can be used. For each point v, we give it a radius of influence, d,, expressed
as a number of nearest neighbors, which we call the degree. Note that this is a mild abuse of
notation, because in the final graph construction, the degree of the node is typically larger
than d,, although d, is a lower bound on the degree. We typically sample values of d, from a
log-normal distribution. A summary of our notation can be found in Table 1.
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Table 1. A summary of our notation.

Symbol Interpretation

X the set of all points

D(-,-) the distance metric

X, the coordinate of a specific point v

d, the degree associated with point v

d the set of all degrees for all vertices

N(v) the set of d, nearest neighbors of v under distance D

https://doi.org/10.1371/journal.pcsy.0000066.t001

Let X, be the coordinates of a point v and d, be the associated degree. In a standard spatial
nearest-neighbor graph, we would connect node v to the nearest d, neighbors by adding edges
for each neighbor. Our model is based on this setup. However, we wish to cluster the points
within v’s radius of influence. Let N(v) be the set of d, nearest neighbors for point v, and let r,,
be the distance to the d,th nearest neighbor, formally, r, = max,en(,) D(v, u). The goal is to
cluster the set of points in N(v) and form edges or hyperedges based on these clusters rather
than individual points. (To be completely clear, we do not consider v in the set of points we
cluster.) We illustrate this process in Fig 1. Formally, for each cluster of points in N(v) we cre-
ate a hyperedge consisting of all points in the cluster combined with the original point v. The
inspiration for this idea is that we would have a group interaction among v and points that are
all themselves close within its region of influence.

The key feature of the model is that we can control the behavior of the graph by controlling
the behavior of the clustering function. Suppose that each point in N(v) is clustered into a sep-
arate cluster. Then we simply recover the pairwise nearest neighbor graph among the points.
Alternatively, suppose that N(v) is clustered into a single cluster. Then we recover a geometric
hypergraph construction where all edges are hyperedges (unless d, = 1). Thus, by varying the
cluster sizes, we can control the extent of hyperedge effects. This idea is illustrated in Fig 2.

The model could accommodate any clustering function we desire and, in addition, sup-
port attributes on nodes as well. However, for concreteness, we use the DBSCAN clustering
algorithm [19]. The DBSCAN method depends on two parameters to control the clustering:
and min_pts. The choice of ¢ is a distance and governs when two points are considered in the
neighborhood of each other, and, in turn, whether or not they might be placed in the same
cluster. While we can change ¢ to achieve the interpolation from pairwise to hypergraph we

Fig 1. How hyperedges are formed in our model. Eight nearest neighbors are computed for node 1 (leftmost
plot) which are then clustered into 3 clusters (middle plot). Finally, each of the clusters serves as a separate group
interaction for node 1 and they become hyperedges.

https://doi.org/10.1371/journal.pcsy.0000066.9001
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Fig 2. The extent of clustering controls interpolation. As we vary the number of clusters produced among each node’s
nearest neighbors, we are able to interpolate between purely pairwise (leftmost plot) and purely higher-order structure
(rightmost plot).

https://doi.org/10.1371/journal.pcsy.0000066.9002

want, the effect depends greatly on the local context of each node. Meanwhile, min_pts serves
as a density check for labeling points as noise. We fix min_pts = 1 here and ignore the distinc-
tion. Consequently, we wish to develop a simple and interpretable parameter to control the
interpolation.

We introduce a parameter a for this goal. When we set « = 0, we want a pairwise graph -
corresponding to the scenario at the left of Fig 2. When we set a = 2, we want a graph where
all edges are complete hyperedges within the region of influence - corresponding to the sce-
nario at the right of Fig 2. For a = 1, wed like a point in the middle where there are around
V/d, clusters. Crucially, we want to smoothly interpolate among these conditions. Conse-
quently, we want to build a function

Ea(rv: dv: d)

that depends on the number of neighbors d,, the distance enclosed by the region of influence
ty, along with the ambient dimension d and produces a value of € for DBSCAN to achieve
this goal. Fig 3 illustrates the reason why the function needs to scale with both d, and r, (and
implicitly, the ambient dimension d).

We map « to distance parameter ¢ in DBSCAN via

1/d _r,
allte, a€e[0,1]
E(X(rvy dv: d) = r d%//Zd r (1)
iz +(a-1) (rv—dygd), ae(1,2].
5 5 5
6,7° oA 6 °4 4
3 8 @ 8 8
([ ] o [}
9° 9° 9°

Fig 3. Example showing local hyperedge formation. Hyperedges formed around the node v = 1 as the number of nearest
neighbors, d,, increases. We want the neighborhood radius parameter € of DBSCAN to scale with d, and r, (the maximum
distance among the d, neighbors). To establish a concrete and controllable model, we design a function €4 that interpolates
between individual clusters around each point and a single cluster. This function needs to scale with the parameters of the
neighborhood to achieve its aims and this example indicates our scaling.

https://doi.org/10.1371/journal.pcsy.0000066.9003
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Recall that we want about \/d, clusters when a = 1. So we want to scale our value of ¢; to

do so. The intuition for our choice of ¢, is that if B’fv denotes a d-dimensional ball with radius
ry, then if we split the volume of this ball, Vol(BfV), into \/d, equal pieces (ignoring the issue
of sphere packing), it would yield pieces of volume \/d,ef ~ r so that &; ~ - The choice
of g4 in Eq (1) then gives an estimate of linear scaling for & € [0, 1] to account for changes in
the dimension d. For a € (1,2], we interpolate from a radius of ¢; to r, which corresponds to
moving from approximately \/d, hyperedges to a single hyperedge.

Our complete spatial hypergraph construction procedure is described in Algorithm 1. This

shows how we build up a list of hypergraph edges by considering the results of the clustering.
We also have our computational codes for both our graph model and applications available at
https://github.com/oeldaghar/spatial-hypergraph-epidemics that implement this routine. To

give an intuition for the resulting graph, a few small samples are shown in Fig 4.

Algorithm 1: Spatial hypergraph model.
1: function SPATIALHYPERGRAPH(X,d,f(:,a)) where d gives the degree for

each node, and f(-,a) is a clustering algorithm with parameter(s)
a such that a=0 will cluster into individual pieces, a=2 will
cluster into a single group, and a=1 will cluster into about

V/points groups

2: H<[ ] [> Initialize an empty list of hyperedges
3: for v=1:n do [> for each point in the the set X
4: N(v) < d, nearest neighbors of X, excluding X,

5: Y« {X, for ueN(v)} [> Build a subset of points to cluster
6: C, < f(Y,a) [> run the clustering with parameter «
7: for ¢ in C, do [> for each cluster in the output
8: APPEND(C, v) [> add vertex v to the cluster before we add it

as a hyperedge

9: APPEND(H, C) [> add a new hyperedge to the graph
10: return H

11: end function

1.1. The choice of clustering distance

This choice of clustering distance ¢4 differs from that in our previous paper [16]. In particu-
lar, the scaling in [16] did not scale with dimension and had a different midpoint &; value. We
illustrate the importance of setting this parameter correctly in S1 Fig.
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5 ‘.;f'}\/,,_ /,,," 4
Y # h Y ~
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Fig 4. Visualization of generated hypergraphs from our model. Hypergraphs generated on n = 250 nodes in d = 2
dimensions for & = 0, 1,2 (left to right) for the same spatial embedding X and specified degrees d.

https://doi.org/10.1371/journal.pcsy.0000066.9004
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We generate data from our model where n = 10000 points are sampled from [0,1]¢, the
degree distribution is sampled from a log-normal with parameters u =log(3) and o =1
(which gives an overall average degree of around 3.5). We fix the geometric information X and
node degrees d, for 25 simulations as we vary the parameter c. Put another way, we do not
regenerate the spatial information for each distinct value of «, and reuse the same informa-
tion for an entire sweep through the choices of a.

Our choice of 4 allows for a smooth interpolation in the total number of hyperedges as
shown in Fig 5. As we increase the radius in the DBSCAN algorithm, we expect the total
number of hyperedges to decrease. Ideally, wed like this decrease to be smooth. The jump
near o = 2 occurs because of a discontinuity in the behavior of the clustering algorithm as we
go from 2 clusters to 1 cluster at each vertex, which cannot be smooth. A comparison with
alternative choices is depicted in S1 Fig and discussed in S1 Text.

1.2. Invariance of connected components

We next show that the connectivity of the overall graph or hypergraph is invariant to the
choice of o and depends only on the set of points X and the assigned degrees d. This is intu-
itively straightforward because the edges formed only depend on the points and the specific
number of neighbors chosen by d, for each vertex, but the following argument makes this

intuition rigorous.

Theorem 1. at-Invariance of Connected Components

Let Go = H(X, d, t) denote the spatial graph generation model outlined above with param-
eters X, d, a. For fixed values of X, d, let Cx 4(a) denote the connected components in G. Then
Cx.a(a) is independent of a.

Proof: Let X, d be fixed and consider a > 0. It suffices to study the connectivity of the
graph formed by replacing each hyperedge with a spanning star. Replacing all hyperedges h €
E(Gg) with the spanning star centered on the generating vertex for that hyperedge, yields the
same graph for all values of a € [0,2]. Since replacing hyperedges with spanning stars does
not alter connected components, Cx 4(a) is independent of . O

A key impact of this result is that it allows us to inherit the usual results about connected-
ness such as critical thresholds and giant components when X and d are constructed to match
such statements. For instance, prior work [20] has derived a critical connectivity threshold for

n=10000, d=2 n=10000, d=5 n=10000, d=10

104.5

10442

Total hyperedges

0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 20 0.0 0.5 1.0 15 2.0
@ «a @

Fig 5. The total number of hyperedges formed is smooth. Total number of hyperedges formed using Eq (1) as we vary
the dimension of the space X for d = 2, 5, 10. This illustrates a smooth interpolation between pairwise effects and pure

hyperedge effects as & varies from 0 to 2.

https://doi.org/10.1371/journal.pcsy.0000066.9005
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the pairwise random geometric graph model. Because the connectivity of the model is equiv-
alent to the underlying pairwise graph due to Theorem 1, these same thresholds apply to our
model as well.

1.3. Graph statistics

We continue by empirically studying simple graph statistics. We study what happens as we
vary the dimension d and value of « in Fig 6. We report the average number of hyperedges of
a given size, the total number of hyperedges, and the total number of triangles in the pairwise
projected graph as a function of . Recall that the pairwise projected graph, or clique expan-
sion, results in a clique to represent each hyperedge of the original graph. We use the same
experimental setup as in Fig 5 and Sect 1.1.

In Fig 6, as we increase o and consequentially €4, the total number of hyperedges decreases
while the total number of triangles in the pairwise projection increases monotonically. This
result is expected because the projected graph has more cliques, which adds more triangles.
The key point of this figure is that we get larger hyperedges with smaller values of « as the
dimension d increases. In terms of the impacts on triangles, this results in a steeper initial
increase in triangles, although overall fewer triangles as the hyperedges get larger.

2. Related work

As mentioned in the introduction, there are a variety of similar geometric graph or spatial
hypergraph models, although none of them enable the same type of seamless mapping from
pairwise to higher-order structures that we achieve. In this context, our model extends both
pairwise geometric random graph models as well as geometric hypergraph models. We briefly
review these constructions and give pointers for more information. We have a longer survey
on random hypergraph models in preparation [21].

Direct inspiration. Our proposed model draws inspiration directly from the geomet-
ric protean model [22] and a simplified extension [23]. These describe a similar latent space
model for graphs where nodes have fixed degrees.

Geometric pairwise models. Pairwise random geometric models are created by pair-
ing geometric information X, for each node v with a distance function D and some rule
for connecting nodes that depends on D. A common construction is just to connect points
below a fixed distance. Given two nodes u,v and their coordinates X, X, an edge is added
if d(X,, X,) < c for some threshold c. The threshold ¢ may vary with nodes as well. Another
common variant is k-nearest neighbor (kNN) graphs where each node connects to its k clos-
est nodes. This is akin to using different radii, r,, for each node. Yet another is to relax to a soft
geometric model using a kernel function f by connecting nodes with probability f{d(X,,X,))
that typically decays as the distance increases.

See the survey [24] for an overview of spatial graph models. Spatial models are specific
instances of latent space models where edge connection depends on latent node features. A
key focus of research on spatial graph models involves connectivity thresholds [20]. This has
important implications for routing in ad-hoc networks of agents where the connection radius
is implied by a radio transmission.

Geometric hypergraph models. There is a completely different notion of a geometric
hypergraph described in the survey [25]. This alternative model directly creates the bipartite
incidence matrix of the hypergraph. The idea is to create two different types of points among
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Fig 6. Simple hypergraph statistics as we vary parameters. Simple graph statistics as we vary & (Eq (1)) and the dimension d. The a denotes the interpola-
tion parameter while we show (leftmost column) the average number of hyperedges of a given size, (middle column) the total number of hyperedge present
(which is repeated from Fig 5), and (rightmost column) the total number of triangles in the projected graph for d = 2, 5, 10. Grey to black to gray bands in the
middle and right columns indicate 10th, 25th, 50th, 75th, and 90th percentiles. In the heatmaps, we show the average number of edges in each bin over the 25
trials. The entries are log-scaled, so 4 corresponds to 10* edges.

https://doi.org/10.1371/journal.pcsy.0000066.g006

the samples of X. One type of point represents nodes and the other type represents hyper-
edges. Then we directly build the incidence matrix of the hypergraph by using any of the spa-
tial connection methods for a geometric graph. Connectivity properties of a model similar to
that in [25] were analyzed asymptotically [26].
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Another class of methods is based on random simplices [27-29]. In such methods, topo-
logical tools such as the Cech complex or the Vietoris-Rips complex are used to form hyper-
edges based on spatial information. Another method [30] makes use of the same topological
tools but places priors on point configurations in order to induce desired structures in the
generated simplices. While of note, these methods are more restrictive than those of hyper-
graphs. A relaxation from simplices to a geometric hypergraph model of varying sizes was
made using latent space modeling and sampling [31]. In particular, the latent space model
uses a shared sequence of radii for all nodes r;, < - < rx. A hyperedge of size k is placed among
vertices whenever the respective balls with radius r¢ intersect.

Our proposed model is distinct from both of these ideas. We allow the hyperedges to vary
based on a clustering algorithm instead of a random point selection. Also, we directly gener-
ate hypergraphs instead of going through simplicial complexes.

3. Clustering coefficients on hypergraphs

There are two common clustering coefficients for a pairwise graph. The global clustering
coeflicient of a graph G is defined as

6xXT
C(G) = ,
(©="3

where T denotes the total number of triangles and P, denotes the total number of length-two
paths. These length-two paths are often called wedges. The average local clustering coeflicient
for a graph is given by

- 1 1 T,

O MECT M)
where V is the vertex set, T, is the number of triangles that contain the node v, and k, is the
number of neighbors of node v.

As mentioned in the introduction, when a pairwise concept is generalized to a higher-
order structure, it often has multiple generalizations. This is the case for clustering coeffi-
cients, and a number of different generalizations of clustering coefficients for hypergraphs
have been proposed (see [32,33]). We will compare how a few of these behave on our model
as we vary a and the spatial dimension d.

Let H denote a hypergraph with a set of vertices V and a set of hyperedges H. Perhaps the
simplest such generalization is to project the hypergraph onto a graph via clique expansion
and then compute the pairwise clustering coefficient for the projected graph. In clique expan-
sion, each hyperedge is replaced by a clique over all of the nodes within the hyperedge. We
then arrive at two distinct clustering coefficients in the hypergraph based on the global and
local clustering coefficients in the projected graph.

The projected graph is unweighted. However, it is built with a union of cliques. We can also
consider the projected multigraph. This is a multigraph interpretation of the weighted pro-
jected graph from networkx for example [34]. In this case, we allow the graph to have mul-
tiple edges as we take the union of all the projected cliques. (A weighted version of this same
multigraph will arise in our study of epidemics as well.) We use this multigraph to define a
weighted local clustering coefficient by counting the number of triangles - including repeti-
tions due to multiedges — divided by the number of wedges centered at a node v. In this case,
it is possible for a node to have more triangles than wedges. A scenario where this occurs is
if the edge that closes the triangle is repeated whereas the edges defining the wedge are not.
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For this reason, we clip the maximum value of the local weighted clustering coefficient at 1.
The overall value is then

i 1 ™
Cu(G)=— Z mm(k;, 1),
V1< )
here T is the number of triangles and k! is the number of edge end-points that start at node
v - both including multiplicities due to multiedges. We note that there are other notions of a
weighted clustering coefficient as well [35]. While we are not aware of any place Cy;(G) has
been proposed, we suspect that it has been.

Another intuitive idea is that triangles are the shortest cycles without repeated edges. This
leads to a different generalization of clustering coefficients to bipartite graphs [36]. We can
apply this idea in the bipartite representation (star expansion) of a hypergraph. This clustering
coefficient amounts to computing the quantity

4
cc, = X&
Ls

where C, denotes the number of 4-cycles and L; denotes the number of 3-paths in a bipar-
tite graph. The quantity CC, is knonw as the Robins-Alexander clustering coefficient [36]. It
is also sometimes known as the metamorphosis coefficient [37].

In summary, we will study the four quantities:

C global clustering coeflicient in projected graph (clique expansion)
C average local clustering coefficient in projected graph (clique expansion)
Cy  multigraph local

CCy the bipartite clustering coeff. in hypergraph incidence matrix (star expansion)

3.1. Experimental results

We study the clustering coefficients in the same experimental regime from Sects 1.1 and 1.3.
The results of computing the four different clustering coefficients are shown in Fig 7. The
bands indicate the minimum and maximum values across 25 trials, while both the embedding
X and degrees k are fixed across values of « for each independent trial.

The first thing we note is that there is no regularity in the behavior as a function of a. Both
the global and local clustering coefficients (C and C) initially increase before decreasing for
large . We find this result puzzling, as we found that the total number of triangles in the
projected graph grows with « in previous figures (Fig 6). We explain this finding in Sect 3.2
next.

Our next observation is the critical impact of the spatial dimension d on the results. All of
the different clustering coefficients show changes in the behavior with regard to this parame-
ter. For instance, C is much lower when d = 10 compared with d = 2. Consider also the results
with Cy, as a function of d. Here, we observe that Cy is smaller when « = 1 and d = 2 whereas
Cy is larger. Finally, for CC, we see an overall decrease in clustering as dimension increases.

In comparison with the three clustering coefficients on the pairwise graph, the behavior of
the bipartite clustering coefficient CCy in the star expansion is more closely aligned with our
expectations that as « increases one would expect clustering coefficients to increase.

Opverall, these results suggest that clustering coeflicients in hypergraphs are far more subtle
and complex than in pairwise graphs. This supports the idea that there could be a multitude
of reasonable generalizations depending on exactly which features are desirable to capture in
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Fig 7. The evolution of various notions of clustering as we vary parameters. Various clustering coefficients (columns) as we vary €4 (x-axes) and the
dimension of the node embedding (rows). From left to right, the columns show: (1) pairwise global clustering coeflicient, (2) pairwise local clustering coef-
ficient, (3) a multigraph clustering coefficient, and (4) the Robins-Alexander clustering coefficient from the bipartite representation. Bands indicate the
maximum and minimum values over 25 trials. Spatial information and degrees are shared across trials.

https://doi.org/10.1371/journal.pcsy.0000066.9007

the generalization. It also suggests that there probably is not going to be a universal clustering
coeflicient in all scenarios.

3.2. Why global and local projected clustering coefficients decrease

We now return to the scenario that initially left us puzzled. Both the local and global cluster-
ing coeflicient of the pairwise graph C and C decrease for large values of a.

Fig 8 shows a detailed example of how the local clustering of a single node can decrease

despite an increase in triangles. The left column (panels a, ¢, e) shows how the nodes u and
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(a) (b)

() (d)

(f) 12

Fig 8. Example comparing the local clustering coefficient for two pairwise projections from instances of our
model. The first row shows the hyperedges generated by our model. The second row shows the pairwise projections
from row 1, highlighting the different edges in black in the right column. The third row highlights all edges that par-
ticipate in a wedge centered about the node u. There are none for the left column but 9 wedges in the right column.
C, is displayed as a ratio of triangles to wedges centered on the node u.

https://doi.org/10.1371/journal.pcsy.0000066.g008
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v are generating hyperedges for o = 1.9 while the right column (panels b, d, f) shows this
process for a = 2 for our model. Note the that pairwise edge between v and u in panel (a) is
formed when running DBSCAN on the node v as the node u is an outlier or boundary point.
The second row (panels c-d) shows the unweighted pairwise projections of each of these
hypergraphs. Panel (d) has the new pairwise edges relative to panel (c) highlighted in black.
These new pairwise neighbors add both triangles and wedges to the node u. In the last row
(panels e and f), we show C, and highlight edges in unclosed wedges centered on the node
u. We get an unclosed wedge for any combination of left vertices and right vertices in panel
(f). So there are 3 X 3 = 9 new wedges centered on the node u. Moreover, in this example the
clustering coefficients C, C, CC, also decrease. This shows how adding triangles with a clique
expansion in the projected graph can, ironically, introduce even more wedges in the graph.

4. Diffusion models in spatial hypergraphs do not show
higher-order effects

Next, we use our model to study diffusion. In comparison to clustering coeflicients, we do not
expect to see large changes in the behavior of diffusion for our graph model. This is because
the same spatial substrate underlies the graph as we vary « to interpolate between pairwise
and higher-order effects. Consequently, the physics of planar diffusion dominates the choice
of higher-order or pairwise model. That said, we still see small differences between the two
models in our study.

To perform the study, we generated a random set of n = 500 points in the [0,1] region and
a fixed set of degrees for each node sampled from a log-normal distribution with mean log(3)
and variance 1. (So the mean degree should be around 3.5). Then we created instances of the
graph as we varied a. On each graph, we solved a seeded PageRank problem as an instance of
a higher-order diffusion. We used the model from [17], although wed expect similar results
from other hypergraph generalizations of PageRank such as [38,39]. The algorithm we pick
is a strongly local and sparsity promoting PageRank method that we choose because it might
encourage slightly more differences among the models than global seeded PageRank solu-
tions. The specific parameters we used were a 2-norm loss, x = 0.0001 (this causes the solution
to grow away from the seed), y = 1 (this reflects the “width” around the seed), and p = 0.5 (an
approximation tolerance). Then we pick a seed in a corner of the graph and zoom in on the
region identified by the seeded PageRank vector. For more details on these parameters, see S2
Text.

The results when using ¢ = 0, 1,2 are shown in Fig 9. These show that the behavior of the
diffusion propagates radially away from the seed vector. There are some small differences in
the propagation, especially around the boundary where the solution entries are small and the
sparsity truncation changes which entries are truncated slightly. On the other hand, we see
broad agreement in terms of element magnitude among the cases. We compare the values
more closely in the scatterplot which shows that there are differences in the values, but the
relative ordering is largely preserved with the pairwise case.

Consequently, and as expected, this model shows little difference on a diffusion
computation.

5. Pairwise vs higher-order epidemics

In our final case study, we illustrate the utility of our spatial hypergraph model for under-
standing epidemics on hypergraphs.

While higher-order contagion is relatively new compared to pairwise epidemics, there are a
number of significant differences between pairwise and higher-order spreading [11,18,40,41].
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Fig 9. Minor differences in seeded and sparse PageRank solutions for our spatial hypergraph model. When using the
same seed node, seeded and sparse PageRank solutions for our spatial hypergraph model only show minor differences as

we vary the amount of higher-order structure. The first row shows the seeded PageRank solutions using the top-rightmost
node for & = 0, 1, 2. The colors are chosen based on a log scale and black nodes did not meet the sparsity criteria for inclu-
sion in the solution. The second row shows a scatter plot of how the solutions for & = 0, 1,2 compare to the pairwise case

(a = 0) for the same seed node. This shows a scatter plot of the components of the seeded PageRank components where
each node is a single dot. The black line would indicate exact agreement for all components of the seeded PageRank solution
vector. Here, we see some small differences, but they largely reflect difference in the precise values computed rather than the
relative ordering of behavior.

https://doi.org/10.1371/journal.pcsy.0000066.9009

In particular, there have been a number of conflicting results on the relevance of higher-order
effects in spreading. On the one hand, epidemic spread is inherently a pairwise behavior in
which a real or virtual pathogen spreads from one individual to another in an infection event.
On the other hand, pathogens spread via airborne routes have obvious group-relevant inter-
actions [42]. Theoretical and empirical studies on these findings have been mixed. As shown
by [40], without strong hyperedge-dependent infection effects, hyperedge transmission mod-
els reduce to weighted pairwise transmission models. Studies of human mobility and SARS-
CoV-2 showed that super-spreading and the associated group interactions were key routes of
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transmission [43,44]. Additional theoretical studies show bistable [11] parameter regions in
epidemics with simplicial complexes.

We use our model to study the impact of group-level or higher-order spreading in epi-
demics. Our vision is to model an airborne pathogen where group-level behavior may be
important. We make several simplifying assumptions. A single infectious node in a group is
enough to infect any other node within that group. This is in contrast to collective contagion
in which some fraction of nodes must be infectious to enable group-level spreading. More-
over, we scale the probability of a node becoming infected with both the number of infected
nodes within that group as well as the size of the group in different ways. This is because the
more infectious contacts a node has within a group, the more infectious aerosols would be
produced. However, a joint contact among a large group requires more space. Moreover, ven-
tilation standards in the US [45] state air dilution rates that scale with the number of people.
This dilution will be a key feature in our models.

5.1. The epidemic model

We used a discrete time Susceptible-Infected-Recovered-Susceptible (SIRS) compartment
model with an additional exogenous infection term. At each time, ¢, a node can be in exactly
one of three states: susceptible, infected, or recovered. Recovered nodes are temporarily
immune from infection and they lose immunity with probability §. Infected nodes transition
to recovered with probability y. Susceptible nodes become infected due to contacts with infec-
tious individuals through an edge or hyperedge or an exogenous infection with probability

7. We include this exogenous infection term because we model a small population embed-
ded within a larger population that can drive infections through other means. In terms of the
interaction with the hypergraph, we view each hyperedge as a separate interaction the node
experiences during a time period. Consequently, each edge or hyperedge represents a possible
infection route. Let v € V and let h € H be a hyperedge containing v that represents a group
interaction. We set the infection probability for node v from hyperedge / at time ¢ to be

(1)

1-(1-p)"
= Pr(vinfected by h|v susceptible) = ——————

, )
&(nl)

where 8 denotes a baseline pairwise infection probability, iflt) denotes the total number of
infected nodes in the hyperedge h at time ¢, and g is function that represents the impact of

ventilation that depends on the total number of nodes in h. The term 1 - (1 - § )ilst) represents
the pairwise infection probability within the hyperedge h for a susceptible node. We further
assume independence among distinct hyperedges. So two nodes can interact among several
groups and each of those interactions can independently transmit infection.

We make three simple choices for g(m) to represent various potential ventilation scenarios.
We use g(m) = 1, g(m) = /m and g(m) = m to model no ventilation, moderate ventilation,
and high ventilation scenarios. The case of g(m) = 1 corresponds to no ventilation for group
interactions and hence infections are transmitted in a pairwise fashion within each hyperedge.
The case of g(m) = m corresponds to a linear dilution due to improved airflow. The US ven-
tilation standards [45] provide ventilation rates per person, which should provide increased
infectious aerosol dilution in large groups. We also study a low-ventilation scenario where
g(m) = \/m, which may correspond to some intermediate regime such as a partially failed
ventilation system, a room over capacity, or some type of transition space such as hallway or
boarding platform.
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5.2. Related work

Many methods related to epidemic spreading often make use of individual-level stochastic
models or mean-field approximations of the continuous-time process [40,46,47]. While these
approaches share similarities with discrete event simulations, there are some notable differ-
ences in the pairwise case regarding fine-scaled information and the impact of homogene-
ity assumptions on total infections [48-50]. For this reason, we make use of a discrete event
simulator to more accurately model fine-scaled epidemic behavior. Thus where other efforts
use a rate of infection in continuous time (and the ensuing non-linear term), we directly use
probabilities for each discrete time step.

The biggest difference in our approach is how we treat infections within hyperedges. Stud-
ies such as [11] designate simplices as distinct group interactions with special rules for when
infection can be transmitted that depends on the number of infected nodes. They may also
embed all pairwise edges induced by a simplex and treat group spreading as a separate mecha-
nism for spreading from pairwise spread. In particular, scaling the infection rate with the size
of the hyperedge is uncommon. For instance, [46] uses an infection rate that scales with i;(f)
and S only but not the size of the hyperedge. The only exception we are aware of is [40], which
uses a partitioned model that allows a different function for each value of m, but their analy-
sis is based on a continuous-time formulation and shows that a mean-field approximation can
be reduced to a weighted pairwise model. The research in [51] also uses a projected graph to
explore stability points in higher-order dynamics. For a more detailed review on higher-order
epidemics, see the survey papers [12] and [52].

5.3. Results from epidemics on our spatial hypergraph model

Throughout our remaining experiments, we use #n = 50,000 node graphs in d = 2 with the
same log-normal degree distribution with parameters log(3), 1, to give a mean initial degree
of 3.5. We use the same exogenous infection rate for all experiments, 7 = 5/1, 000, 000, which
corresponds to one exogenous infection every 4 time-steps. We also use the same recovery
parameter ¥ = 0.1 for all experiments, which corresponds to an expected infection time of
10 time-steps. We will vary the infectivity parameter § and immunity parameter § in the
experiments. We run the simulation for 2000 time steps.

We simulate epidemics using a discrete event simulation to produce trajectories of the
number of infected nodes. Detailed pseudo-code for the SIRS model on a general hypergraph
is outlined in S2 Text. A few sample epidemic trajectories from a pairwise graph are shown
in Fig 10 (left) where we vary the number of initially infected nodes. These all show conver-
gence to a steady state over the time history of the epidemic. While higher-order epidemics
can exhibit bistability, we are not in a bistable regime. This is illustrated in S2 Text and S2
Fig.

As we report on the results for other epidemic parameters, we found that the average num-
ber of infected nodes over the last 1000 timesteps was a reliable quantity. We show a his-
togram of this value over a number of distinct simulations in Fig 10 (right). This shows that
the maximum difference between any simulation was around 100 infections.

5.4. Threshold behavior in the epidemics as the infection probability varies

We next study the same experiment but with a focus on the actual quantity of the average
trailing infected nodes. Fig 11 shows the average trailing infections as we vary the amount of
higher-order structure in our model (@) and the infection probability (). As expected, each
figure shows a clear epidemic threshold. As 8 increases, we go from a small steady state to
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Fig 10. An example of infected node trajectories. (Left) An example of the infected node trajectories on a pairwise graph
(a = 0) with n = 50000, d = 2. Despite large changes to the fraction of initially infected nodes, these show convergence to

a steady state. The black box indicates the last 1000 times steps, over which we compute the average number of infected
nodes. (Right) This shows a histogram over the trailing infected nodes for a number of different samples showing that the
average trailing number of infected nodes is a reliable quantity. Other epidemic parameters are fixed at ¥ = § = 0.05.

https://doi.org/10.1371/journal.pcsy.0000066.9010
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Fig 11. Ventilation can have non-intuitive effects on average trailing infections. The top row shows infections as a
heatmap in o (higher-order structure) and 8 (infection probability) space while fixing ¥ = § = 0.05. The entries are log-
scaled, so 4 means 10* average trailing infected nodes. The bottom row shows the same data as a set of lines where larger
values of 8 correspond with more red / yellow colors. The columns correspond to the emulated ventilation functions
g(m) =1, g(m) = \/m,g(m) = m. Note that, in the absence of strong ventilation (left column), increasing & increases total
infections. In contrast, under linear ventilation (right column), increasing o decreases total infections

https://doi.org/10.1371/journal.pcsy.0000066.9011

an outbreak with about half the graph. A second observation is that, as we emulate a greater
amount of ventilation (g(m) = \/m or g(m) = m), we need larger infection probabilities as we
transition the graph from pairwise to higher-order structure.

Perhaps the most interesting observation is that the impact of increasing « is coupled with
ventilation. When g(m) = 1 then each hyperedge represents a quadratic number of possible
infection pathways. This corresponds to increasing the total number of edges, as we will see
shortly (Fig 15). Consequently, we expect this to show that highly infected populations occur
at lower infection probabilities, see e.g., [40]. That this same impact occurs for g(m) = \/m
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is also expected by the same reasoning. This simply doesn’t change the probabilities enough
to mask the overall increase in effective edges. In contrast, setting g(m) = m should show
roughly constant behavior as a function of o by the same reasoning. We do not see this behav-
ior. In the case of linear ventilation (right column) increasing a causes total infections to
fall—especially right around the threshold value of 8. This indicates some coupling between
ventilation and higher-order structure, which we will explore in the next section.

5.5. The impact of hyperedges varies with the epidemic parameters

Indeed, the relationship between our ventilation term g() and the amount of higher-order
structure is not straightforward. In our initial conference paper [16], we found that average
trailing infections increases with a whereas in the previous section we found that average trail-
ing infections decreases with a. In a small surprise, the impact is extremely sensitive to the
epidemic parameters. In the case of linear ventilation, interpolating to higher-order struc-
ture can case total infections to increase or decrease in a non-linear fashion. We illustrate this
while separately changing two different epidemic parameters, the infection probability 8 and
the waning immunity term &. Fig 12 shows average trailing total infections as we vary 8 while
fixing & = 0.01 under linear ventilation. While the number of infections differs among those
plots, they show dramatically different shapes depending on how much higher-order struc-
ture is present. Increasing o can cause total infections to decrease, increase, or produce non-
linear mixed effects. Similar effects are present when varying J instead of 8 in Fig 13. Note
that column 3 of Fig 12 is the same as column 1 of Fig 13.

In pairwise epidemics, the dominant eigenvalue is related to the epidemic threshold in
the mean-field and often used as a proxy for epidemic strength [53,54]. The total edge vol-
ume (total edges in pairwise graphs) is related to epidemic thresholds in randomized net-
works [55]. We compute both of these quantities in the pairwise projections to illustrate
that the effect we are seeing cannot be explained by simple pairwise tools. In order to do
so, we compute a weighted clique expansion of generated hypergraphs where hyperedges
are weighted using the ventilation term g(m). A single hyperedge of size m is mapped to a
clique on m nodes with edge weights 1/g(m). We sum up the weights from all hyperedges on
the same pair of nodes. We then compute the dominant eigenvalue 4; and sum of weighted
degrees. These are the leftmost columns of Figs 14 and 15 respectively. In this case, increases
in total infections are not due to changes in either the dominant projected eigenvalue of pro-
jected edge volumes.

In terms of mechanisms underlying this effect, we note that the overall changes are mod-
est with respect to the population size. However, they are reliable and repeatable. We were
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Fig 12. Average trailing infections is sensitive to epidemics parameters under our model. From the left to right, we show what happens as we increase the
value of (3 for epidemic simulations for the waning immunity probability § = 0.01 under linear ventilation g(m) = m with ¥ = 0.05. While average trailing
infections differ among the plots, the impact of interpolating from a pairwise to higher-order is sensitive to epidemic parameters.

https://doi.org/10.1371/journal.pcsy.0000066.9012
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Fig 13. Changing a single epidemic parameter can alter shape of epidemics. From left to right, we increase the parameter § while fixing other epidemic
parameters (¥ = 0.05 and 8 = 0.1) and recording average trailing infected nodes. All figures use linear ventilation, g(m) = m. The impact of higher-order
structure (large &) can cause both growth and decay in the epidemic impact. Note that the leftmost figure is the same as column 3 of Fig 12.
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Fig 14. The dominant eigenvalue of weighted clique expansions from our model. Using the ventilation function g(m), a single hyperedge of size m is pro-
jected to a clique with edge weights of 1/g(m). Gray and black lines indicate the 10th, 50th, and 90th percentiles while the gray bands denote the max and min
over 25 trials. Linear ventilation causes the pairwise dominant eigenvalue to decrease while other choices for g(mm) generally cause an increase. This would
correspond to a weaker epidemic, which is not what is always found in the experiments from Figs 12 and 13.
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Fig 15. Projected edge volumes of weighted clique expansions from our model. A single hyperedge of size m is projected to a clique with pairwise edge
weights 1/g(m). Gray and black lines indicate the 10th, 50th, and 90th percentiles. This quantity is constant for g(m) = m while increasing for other choices of
g(m).
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PLOS COMPLEX SYSTEMS |https://doi.org/10.1371/journal.pcsy.0000066 September 12, 2025 20/ 26



https://doi.org/10.1371/journal.pcsy.0000066.g013
https://doi.org/10.1371/journal.pcsy.0000066.g014
https://doi.org/10.1371/journal.pcsy.0000066.g015
https://doi.org/10.1371/journal.pcsy.0000066

PLOS COMPLEX SYSTEMS

A spatial hypergraph model to interpolate between pairwise graphs and hypergraphs

B=10.002, g(m) =1

unable to identify any large properties or differences by studying the epidemic propagation

in detail, or looking at which hyperedges were responsible, at least beyond similarly small dif-
ferences. For instance, when we studied the fraction of infection transmissions along edges or
hyperedges, we could see that higher-order edges were more likely to transmit infections in
the § =0.01 and & = 0.02 scenario compared with the § = 0.03 scenario. But given that these
edges account for a fairly small fraction of the overall transmissions in the highly ventilated
case, we did not believe this finding to be mechanistically conclusive.

5.6. Changes in hyperedge transmissions by size below the pairwise
threshold

Lastly, we examine transmissions by hyperedges of a given size in the steady state. What we
call a transmission is when node i infects node j over a hyperedge. We focus on the case where
there is no ventilation g(m) = 1. Recall that this is not a pairwise epidemic as a pair of nodes
can interact in multiple hyperedges. We choose 8 = 1073, which is below the threshold in the
pairwise case (o = 0), and causes a large steady state epidemic in the higher-order case (a -
2). This will let us observe the impact of hyperedge transmission as total infections dramat-
ically increases. The data are shown in Fig 16. For each epidemic trajectory, we compute the
average transmissions by hyperedges of a given size over the last 1000 time steps (similar to
Fig 10). We then max-normalize this information for each value of a. We find that initially,
traditional pairwise edges are responsible for most transmissions but as the total number of
infected nodes increases there is a transition to larger hyperedges transmitting infections.
For 0.3 < a < 0.6, transmissions primarily occur due to large hyperedges or small hyperedges.
However, as we move to larger values of 1 < a < 2, medium-sized hyperedges become respon-
sible for most transmissions. Though as shown in the rightmost Fig 16, the effect at & = 2 can
partially be explained by projected edge volumes.

In this case, we again see the utility of our model. Note the two regimes: for small &, which
cause a transition to an epidemic, we see that large hyperedges matter more than medium size
hyperedges. Whereas in a strong, steady state epidemic at large «, then its the medium-size
hyperedges that matter.
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Fig 16. Without ventilation effects, higher order structure can dominate transmissions. (Left) As we increase &, the underlying higher-order structure
increases causing a dramatic increase in average trailing infected nodes in the g(m) =1 case to model no ventilation. (Middle) We collect statistics on which
hyperedge size was responsible for transmissions of an infection. We display the probability that a transmission occurred with a hyperedge of a given size

in the steady state (max-normalized for each ). At ¢ = 0, all infections are transmitted by pairwise edges because these are all that exist. For o a little bit
larger (0.3 to 0.6), the larger hyperedges around 10> dominate transmission right around the threshold. Then for o larger than around 1.0, we see a transition
to medium size hyperedges dominating. This persists until & = 2. (Right) The effect at & = 2 can partially be explained by projected edge volumes of those
higher-order edges accounting for an out-sized portion of edges.

https://doi.org/10.1371/journal.pcsy.0000066.9016
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6. Discussion

Pairwise interactions have enabled a large body of research with applications ranging from
power grid robustness [56] to heterogeneity and disease spread [57-59] to accelerating
materials and molecule discovery [60]. The non-trivial effects of higher-order structure cou-
pled with competing generalizations for intuitive pairwise concepts have posed a signifi-
cant challenge for researchers with a grounded understanding in pairwise data [10,61]. This
manifests in a number of ways including inconclusive and contradictory findings depending
on exactly how the higher-order problem is realized. We saw a key illustration of this in terms
of the clustering coeflicients (Sect 3), where we investigated and saw a number of distinct
properties of various generalizations of clustering coefficients to hypergraphs [32,33,36,62].
As an example beyond what we have looked at, consider the impact of representation in the
behavior of higher-order synchronization [13]. In this case, the choice of data representation
(simplex versus hypergraph) can alter the behavior of synchronization.

The utility of our model is that we can isolate effects to the impact of the higher-order
pieces from the rest of the graph model. We presented a few studies of this behavior but many
more are possible. As it relates to epidemics and other dynamics, our model gives a paramet-
ric way to couple dynamics to higher-order structure through the parameter «. This leads to
some interseting questions about whether even simplier epidemic models such as SIS would
yield similar results where the impact of higher-order structure is intricately coupled with
epidemic parameters. On the network analysis side, a quantitative understanding of how
the interpolation parameter, ot, maps to popular network statistics or fitting the model to
data would be an interesting avenue of exploration. We are optimistic that our model will be
broadly useful in the future to help understand the origin of ambiguities in the behavior of
higher-order network models in the future.

There are many possible extensions of this model. For instance, we could consider exten-
sions to gravity-like model wherein the link or move around based on gravity-like terms with
their neighbors [63,64]. In terms of epidemics, pairwise epidemics behave differently in the
presence of interventions [64], extending these types of interventions to hypergraphs would
shed further insights into the role of higher-order spreading in more realistic scenarios. One
avenue of future work we plan to investigate is fitting our model to a dataset. In this case, we
anticipate that a combination of modern vertex embedding techniques [65-67] will yield
interesting models that are broadly similar to input networks.

Supporting information

S1 Text. Text discussing the choice of clustering distance parameter and differences from a
conference version of this work.
(PDF)

S1 Fig. Figure showing the total number of hyperedges using different radius functions
for scaling the radius parameter in DBSCAN as we vary dimensions. The functions used
for €4 are: Eq (1) (leftmost column), linear scaling with &4 = ar,,/2 (middle column), and scal-
ing by « instead of at'’4 when « < 1 (rightmost column). Gray to black to gray bands (only
visible when zoomed in) in the middle and right columns indicate 10th, 25th, 50th, 75th,

and 90th percentiles. This shows that our choice of Eq (1) gives the smoothest interpolation
between pairwise effects and pure hyperedge effects as « varies from 0 to 2. Note that the
leftmost column corresponds to the subplots from Fig 5.

(TIF)
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S2 Text. Text discussion a higher order generalization of PageRank to a hypergraph. It
closerly follows [17].
(PDF)

S3 Text. Text containing our psudeo-code for our implementation of a hypergraph
SIRS model. Our code is also publicly available at https://github.com/oeldaghar/spatial-
hypergraph-epidemics.

(PDF)

$4 Text. Supplemental text discussing the lack of bistability in our higher-order epidemic
model.
(PDF)

S2 Fig. Figure showing that the average trailing number of infected nodes is a reliable
quantity and we are not in a bistable regime for our epidemic simulations. In this case, epi-
demics are seeded using an initial number of infected nodes of 5%, 10%, 15%, 20%, 25%, 50%, 75%,
and 95% of the graph. Other epidemic parameters are fixed with y = § = 0.05. Each bin cor-
responds to 80 simulations (10 per each initial infected fraction). We compute the range of

total infections for those simulations in the steady state. The maximum difference is less than

600 infections (which reflects a worse-case fluctuation of about 1% of nodes) right around the
epidemic threshold.

(TIF)
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